深红色发布商 与我们一起出版Reprints电子书视频文章

Full Text

海洋生物学与海洋学专业

如果白鲨,Carcharodon Carcharias,Carcharodon Carcharias,拥有Disconjugate Optoinetic刺激的刺激是什么意思?

erich k ritter.1,2*和andreas dellios3.

1美国数学与统计系

2美国鲨鱼研究所

3.美国鲨鱼学校海洋生物学系

*通讯作者:Erich Ritter, Department of Mathematics and Statistics, USA

提交:乐动体育注册7月06日,2020年;发布:2020年7月31日

内政部:10.31031 / EIMBO.2020.03.000570

ISSN 2578-031X
第3卷问题4.

摘要

Disconjugate眼球运动是一些动物物种的特征,但是是否尚不清楚白色鲨鱼,Carcharodon Carcharias.,拥有独立的眼睛时刻。在这里,如果讨论了他们表现出这种能力,它可能意味着什么。视频证据表明,与白鲨看着独立的眼球运动,观看了连续两个针对它们的不同目标。通过Disconjugate Optopetic刺激讨论了视频核心框架的不同解释,作为对该观察的最高级可能的解释。这样的能力将使白鲨扫描其整个视野,并在能够观察其头部两侧的两个预期食物源方面赋予优势,使其决定哪个目标代表哪个目标更可能成功。这种机制有助于在狩猎非常敏捷的钉子时解释白鲨的高成功率。

关键词:行为;分离性视运动;眼球运动;狩猎;白鲨

Introduction

The white shark,Carcharodon Carcharias., a typical apex predator, relies on a keen sense of vision to hunt down agile prey, in particular pinnipeds such as seals and sea lions [1-3]. It follows that a considerable proportion of the white shark’s brain would be dedicated to processing visual stimuli to enable efficient hunting [4]. As with other shark species, the eyes of white sharks are positioned laterally, meaning that only one eye at a time can observe an object positioned alongside their bodies, and only when the object is between the overlapping fields of vision could both eyes focus on the same object. So, what potential advantages could white sharks acquire if they were able to move both eyes independently, and so observe two objects on both sides of their heads simultaneously?

分离性视运动,即双眼独立活动的能力,是一些水生动物的一种特征。虽然大多数骨鱼都有轭状或共轭视觉[5-7],但有些种类的鱼有独立移动双眼的能力[5,8,9]。由于鲨鱼的眼睛位置与多骨鱼类相似(除了少数种类,如大眼脱粒鲨,长毛性秃发), it is reasonable to assume that their vision is also characterized by conjugate optokinesis. However, optokinesis has not yet been studied in sharks, so it is not known whether their eyes indeed function in a yoked manner.

白鲨可以利用可能采用更独立的眼睛运动的机制源于视频证据的概念。在视频中,白鲨似乎使用视觉轴同时使用视觉轴观察其身体的相对侧的物体,导致Disconjugate Optokinesis的可能性。这种潜在能力将在狩猎时赋予相当大的优势,允许鲨鱼扫描两侧的区域,而例如,密切地测量钉子拖车[10-13]。Disconjugate Optokinesis同样有用的是努力防止kleptoparasitism;其他白鲨已经固定或杀死的猎物[14]。毫无疑问,这种优势在很大程度上导致了白鲨的觅食策略的有效性。据了解,可以从这种单一视频中得出并无得出的结论,但它提供了一种有趣的视角,进入白鲨之间的白斑眼睛运动的潜在使用和选择性优势。

Methods and Result

视频是在2017年11月21日捕获的,墨西哥瓜达卢佩岛海岸。可以看到大约4米长的男性白鲨,将位于表面上的笼子圈出。诱饵也被放置在约5米的表面上,远距离笼中的摄影师直接相反。该视频用1080i和120fps拍摄。在必要时,逐帧分析序列,使用Apple®和按顺序图像使用Final Cut Pro X(版本10.4.8)以1/60秒的间隔检查。鲨鱼的左眼动作主要基于其镜头相对于其眼插座的外缘的位置的变化来解释。

Chronology of the encounteR.

鲨鱼在摄影师面向笼子的一侧使几次通过,在此期间它保持平均相对速度约为0.3尾部/秒。在这些通行证之一期间,在轻微上升开始,鲨鱼基于纵向轴线接近摄影师的一般方向,因此似乎直接看他。随着鲨鱼更接近,它与摄影师的目光接触被局限于鲨鱼的左视野。一旦鲨鱼最接近视频中,它的左眼略高于摄影师的头部,但留在他身上。由于鲨鱼的头部开始远离摄影师,左眼看不到头部另一侧的表面定位的诱饵,一直关注摄影师。左眼留在这种固定位置,直到左眼的视野也可以看到诱饵;此时,该眼睛以稍微鼻鼻的方向移动,以实现诱饵的立体视图。由于头部的转弯是迅速的,只有0.70秒,直到鲨鱼对齐其体的整个正面部分,左眼留在潜水员上,在它开始转动头部后不超过0.40秒。所呈现的观察可以从补充视频收集。

讨论

动物视觉系统的主要驱动程序似乎是它的觅食生态[15]。鉴于白色鲨鱼饲料的动物的高速和敏捷性,特别是钉子化物[14,16,17],他们的视觉系统需要高度进化。白鲨已经开发出攻击此类快速猎物的策略[14,17,18],他们的主要偏好似乎是从后面和以下伏击[12,16-18]。当鲨鱼接近一组松散的钉子队时,各种潜在的靶标在鲨鱼的两侧都可以同时出现。因此,在这种情况下,鲨鱼必须决定该组的哪个成员攻击。对于鲨鱼来说,可以让鲨鱼能够观察各个眼睛的潜在目标,同时独立地工作,基本上加倍它可以调查的区域。首先,我们讨论视频的那一刻,提供了能够确实表明某种形式的独立眼睛运动和争论这种可能性不同的证据。从如何提升白鲨的狩猎行为的角度来看,我们从如何看待这种潜力能力。

Disconjugate eye movements

视频上的精确时刻,表示potential existence of independent eye movements is when the shark’s head turned away from the diver before the left eye-which was still fixed on the videographer- and was able to see the bait. This very moment indicates that the shark must have been aware of the exact position of the bait, while still looking at the diver with its left eye. The ability to compare two objects in opposite fields of view has been demonstrated in such teleosts as sandlances,Limnichthyes fasciatus, and pipefish,Corythoichthyes intestinalis[5,6,9]. 这些物种可以执行上述操作,将一只眼睛固定在静止物体上。相反,另一只眼睛继续跟随另一种刺激,或者,在海龙鱼和金鱼这类物种的情况下,Carassius auratus,在观察周围环境时独立移动眼睛,但在跟踪目标时以协调的方式移动眼睛[6,19]。蝴蝶鱼,Chaetodon rainfordi,和红耳滑块,Pseudemys script一种, on the other hand, display a more yoked form of optokinesis but can operate their eyes independently during specific responses [6,20].

The observation of a white shark, as seen in the video footage, could be similar to any of the above visual configurations. Another possibility could be that the shark could have shifted its focus alternately between its two eyes. Kirmse [21] suggests during such a shift that the visual input from the less attended eye would gather continuous information until a more conspicuous target within the entire visual field is selected, at which point the animal would adopt binocular vision. However, it is unlikely that visual information from the less attended eye remains unprocessed owing to the blocking or suppression of the fovea, the minute depression in the retina where vision is most acute, as has been observed in other animals, including some bird species [22-24].

另外,有可能认知映射[25-27]。白鲨可以从两只物体仍处于双筒望远镜的距离中记住诱饵相对于笼子的确切位置,在其前几次通行证中,然后刚刚采取行动?认知映射可能确实在这个事件的年表中起着作用,但它不会指示在与摄影师遭遇期间右眼正在做的事情。此时,不能排除可能性的可能性,即两条鲨鱼眼之间的至少一定程度的独立性可以存在,允许能够在每个视野中同时跟踪两个视觉目标。在诱饵进入其左视野之前,白鲨改变了头部方向的事实表明,其右眼确实保持了诱饵,至少在其功能或视网膜视野中的外周性[28,29],但可能on a lower level of processing, until the shark’s primary focus shifted [30].

如果白鲨确实拥有Disconjugate的视力,那么每只眼睛也将独立于另一只眼睛焦点。这种能力对于跟踪来自两只眼睛不等距离的物体是至关重要的。以这种方式聚焦在多个物体上可能是具有挑战性的,振荡头部运动的振荡头部运动,同时游泳需要凝视稳定和固定[31]。然而,这种机制已经在蝌蚪中记录,这补偿了通过眼睛和头部的补偿运动来补偿由其运动形式引起的视网膜换档[32]。由于以前的研究表明,鲨鱼更喜欢将目光保持尽可能稳定,以限制光学流动[7,33],因此它们可以获得最少量的模糊的最高分辨率。

光照强度也会起作用吗?

在一些地区,白鲨更喜欢在低光线条件下攻击钉子化合物[14,34,35],并且有几项研究表明,鲨鱼在追逐猎物时在可检测性和可见性之间保持微妙的平衡[11,16,36]。Thus, the fovea, where visual acuity is highest, of white sharks consists primarily of the rod photoreceptors that are used in low-light situations [37], likely as a result of this species’ adaptation to hunting in such conditions [10,14,35]. Although the reaction time of rods is slower than that of cone photoreceptors, which are used for color vision [38-40], the latter is likely unimportant for this species owing to this hunting preference of dark-colored pinnipeds. Through the use of eyes, and thus fovea, with independent movement, a shark could determine which prey to follow based on improved contrast.

Disconjugate眼球运动和白色鲨鱼

The success rate of a white shark when attacking fast-swimming prey such as seals is close to 60% during its preferred low-light conditions [35]. This is quite astonishing, considering the agility of pinnipeds. Therefore, it cannot be rejected that this high success rate could be due to the ability to observe more than one potential target and to scan the entire visual field with two eyes functioning independently. In light of the potential existence of disconjugate eye movement in sharks, research should investigate the fitness benefits of this conceivable characteristic, for example, by performing a choice experiment in which two food sources of different caloric values are offered simultaneously to an approaching shark.

健康益处是动物进化过程中一个不变的机制,因此,如果这种表型存在,它也一定是贯穿动物进化的一种力量Carcharodon。The first species of this lineage likely appeared in the Thanetian period approximately 55 million years ago [41]. Although there is not much known regarding how these early sharks hunted, they already possessed serrated, sawblade teeth, enabling them to feed on early marine mammals, and then seals in the present evolutionary period [42-44]. Considering that the agility of pinnipeds likely improved over time, optimizing eye use inCarcharodon在这里讨论的范围内,本可以帮助将白鲨变成今天的鲨鱼物种中最具压倒的超级捕食者。

承认

We thank “Pro Win Pro Nature” for financially supporting this project.

References

  1. Boustany Am,Davis Sf,Pyle P,Anderson SD,Boeuf BJ等。(2002)为白鲨扩建了利基。自然415(6867):35-36。
  2. Fallows C、Gallagher AJ、Hammer N(2013)白鲨(Carcharodon Carcharias.) scavenging on whales and its potential role in further shaping the ecology of an apex predator. Plos One 8(4): e60797.
  3. Hussey NE, Cann HM, Cliff G, Dudley SFJ, Wintner SP, et al. (2012) Size-based analysis of diet and trophic position of the white shark (Carcharodon Carcharias.) in South African waters. In: Domeier ML (Ed.), Global perspectives on the biology and life history of the white shark. USA.
  4. Lisney TJ, Bennett MB, Collin SP (2007) Volumetric analysis of sensory brain areas indicate ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raffles B Zool Suppl 14: 7-15.
  5. 弗里奇斯卡,马歇尔NJ(1999)一条小鱼中的一类新的眼球运动。Curr Biol 9(8):272-273。
  6. Fritsches KA,Marshall NJ(2002)硬骨鱼视运动期间的独立和共轭眼动。实验生物学杂志205(Pt 9):1241-1252。
  7. Land MF (2015) Eye movements of vertebrates and their relation to eye form and function. J Comp Physiol A 201(2): 195-214.
  8. 土地MF(1999)视觉光学:粉末眼中突破了所有规则。Curr Biol 9(8):286-288。
  9. 小矮星JD,科林SP,奥特M(1999)收敛of specialized behaviour, eye movements and visual optics in the sandlance (Teactostei.)和变色龙(爬行动物)。Curr Biol 9(8): 421-424.
  10. Hammerschlag nr,Martin Ra,休息C(2006)环境条件对白鲨之间的捕食者 - 猎物相互作用的影响(Carcharodon Carcharias.)还有海豹(arctocephalus pusillus) at Seal Island, South Africa. Environ Biol Fish 76(2-4): 341-350.
  11. Laroche Rk,Kock Aa,莳萝LM,Oosthuizen Wh(2008)运行了手套:鲨鱼和两龄级密封件之间的捕食者 - 猎物游戏。Anim表现76(6):1901-1917。
  12. Skomal GB, Hoyos PEM, Kukulya A, Stokey R (2015) Subsurface observations of white sharkCarcharodon Carcharias.predatory behaviour using an autonomous underwater vehicle. J Fish Biol 87(6): 1293-1312.
  13. Towner AV、Leos BV、Langrock R、Schick RS、Smale MJ等人(2016年)《白鲨狩猎策略的性别特异性和个体偏好》。功能经济学30(8):1397-1407。
  14. Martin Ra,Rossmo DK,Hammerschlag N(2009)狩猎模式和白鲨捕食的地理分析。J Zool 279(2):111-118。
  15. Martin GR (2014) The subtlety of simple eyes: The tuning of visual fields to perceptual challenges in birds. Phil Trans Roy Soc Lond B 369(1636).
  16. Hupains C、Holman D、Robbins R、Fox A、Endler JA等人(2015年)白鲨在捕食性接近时利用太阳。美国国家电视台185(4):562-570。
  17. Klimley AP, Boeuf BJ, Cantara KM, Richert JE, Davis SF, et al. (2001) The hunting strategy of white sharks (Carcharodon Carcharias.) near a seal colony. Mar Biol 138(3): 617-636.
  18. Fallows C,Fallows M,Hammerschlag N(2016)月相对白鲨捕食-被捕食相互作用的影响(Carcharodon Carcharias.)还有海豹(小圆头线虫)。Environ Biol Fish 99(11):805-812。
  19. 复活节SS(1972)追求金鱼的眼球运动(Carassius auratus)。Vision Res 12(4):673-688。
  20. Ariel M(1990)乌龟的独立眼球运动。Vis Neurosci 5(1):29-41。
  21. Kirmse W(1990)Kritischeü多功能传感器ä母鸡贝五ö 动物生理学杂志94(2):217-228。
  22. Engelage J,Bischof HJ(1988)enucleation增强了斑马雀的异位闪蒸的反应(Taeniopygia Guttata Castanotis Gould)。Exp Brain Res 70(1):79-89。
  23. Hellmann B, Güntürkün O (2001) Structural organization of parallel information processing within the tectofugal visual system of the pigeon. J Comp Neurol 429(1): 94-112.
  24. Voss J,Bischof HJ(2003)Zebra Finches中构造视觉系统内的同侧视觉信息的监管。J COMP Physiol A 189(7):545-553。
  25. Cain P,Malwal S(2002)弱电鱼类导航行为的里程碑式应用和发展Gnathonemus petersii(摩洛迪亚; Teactostei)。J EXP BIOL 205(24):3915-3923。
  26. Haight JL, Schroeder JA (2011) Spatial cognition in zebrafish. In: Kalueff AV, Michael S (Eds.), Zebrafish Models in Neurobehavioral Research. USA, pp. 235-248.
  27. Lee Sa,法拉利A,Vallortigara G,Sovrano VA(2015)空间映射中的边界原理:来自斑马鱼的证据(Danio Rerio)。行业过程119:116-122。
  28. Martin GR, Prince PA (2001) Visual fields and foraging in procellariiform seabirds: Sensory aspects of dietary segregation. Brain Behav Evol 57(1): 33-38.
  29. Martin Gr,Katzir G(1994)苍鹭的视野和眼睛运动(Ardeidae)。Brain Behav Evol 44(2): 74-85.
  30. Voss J, Bischof HJ (2009) Eye movements of laterally eyed birds are not independent. J Exp Biol 212(10): 1568-1575.
  31. Masseck OA, Hoffmann KP (2009) Comparative neurobiology of the optokinetic reflex. Ann NY Acad Sci 1164(1): 430-439.
  32. Combes D,Ray D,Lambert FM,Simmens J,Straka H(2008)一种用于脊椎动物凝视稳定的内部前馈机制。Curr Biol 18(6):214-243。
  33. Land MF (1999) Motion and vision: Why animals move their eyes. J Comp Physiol A 185(4): 341-352.
  34. Fallows C,Martin RA,Hammerschlag N(2012)海豹岛(南非)白鲨与加利福尼亚其他地点的相互作用比较。摘自:Domeier ML(编辑),《白鲨生物学和生活史的全球视角》。《美国》,第105-117页。
  35. Martin RA, Hammerschlag N (2011) Marine predator-prey contests: ambush and speed versus vigilance and agility. Mar Biol Res 8(1): 90-94.
  36. 高盛KJ,安德森SD(1999)空间利用和空白鲨鱼的游泳深度,Carcharodon Carcharias., at the South Farallon Islands, Central California. Environ Biol Fish 56(4): 351-364.
  37. Gruber SH, Cohen JL (1985) Visual system of the white shark,Carcharodon Carcharias.,重点是视网膜结构。MEM CALIF ACAD SCI 9:61-72。
  38. Cao D,Zele AJ,Pokorny J(2007)将脉冲响应函数与反应时间联系起来:杆和锥反应时间数据和计算模型。视觉研究47(8):1060-1074。
  39. Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, USA.
  40. Miloševicm,višnjicjì,damjanovic i,nikčevicm,andjus p等人。(2009)用杆状和混合棒锥视网膜鱼类电象反应的时间分析。Gen Physiol Biophys 28(3):276-282。
  41. Jambura PL, Kindlimann R, López RF, Marramà G, Kriwet J, et al. (2019) Micro-computed tomography imaging reveals the development of a unique tooth mineralization pattern in mackerel sharks (Chondrichthyes;Lamniformes) in deep time. Sci Rep 9(1): 1-13.
  42. Diedrich C(2011)世界上最古老的化石密封记录。NAT SCI 3(11):914-920。
  43. Diedrich CG(2013)白色和Megatooth鲨鱼的演变,以及海豹,西里昂人和鲸鱼早期掠夺的证据。NAT SCI 5(11):1203-1218。
  44. Koretsky IA, Barnes LG (2006) Pinniped evolutionary history and paleobiogeography. Mesozoic and Cenozoic vertebrates and paleoenvironments: Tributes to the career of Prof. Dan Grigorescu. pp. 143-153.

© 2020 Erich Ritter. This is an open access article distributed under the terms of the创意公共归因许可证,它允许无限制的使用、分配,一个d build upon your work non-commercially.